

Target Value Delivery: Being Comfortable with Being Uncomfortable

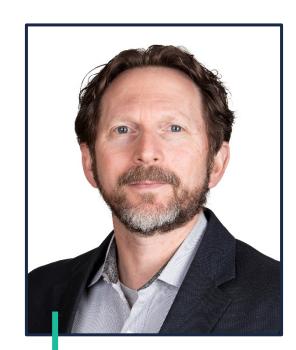
Todd Lord, Penn State Health

Gregory Stackel, HKS, AIA

Roger Stadler, Barton Malow Builders

THE ABC'S OF LEAN: TRANSFORMATION THROUGH ACTIONS, BEST PRACTICES AND COACHING

October 23, 2020


© LEAN CONSTRUCTION INSTITUTE

BULLEREE

The Presenters

TODD LORD
Sr. Vice President of
Community Hospital
Development
Penn State Health

GREGORY STACKELPrincipal
HKS

ROGER STADLER
Project Director
Barton Malow / Alexander

Out of the Comfort Zone

As a/an ____ would you be comfortable with ____

Owner

- Admitting you had a bad proforma budget
- Releasing work while the project is over-budget
- Making MEP operational decisions early before the staff is hired

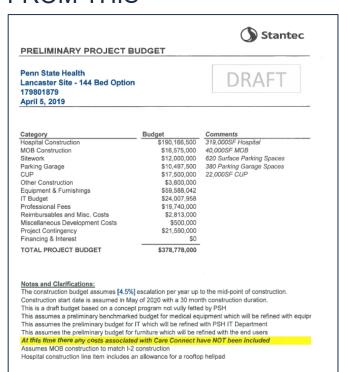
Designer

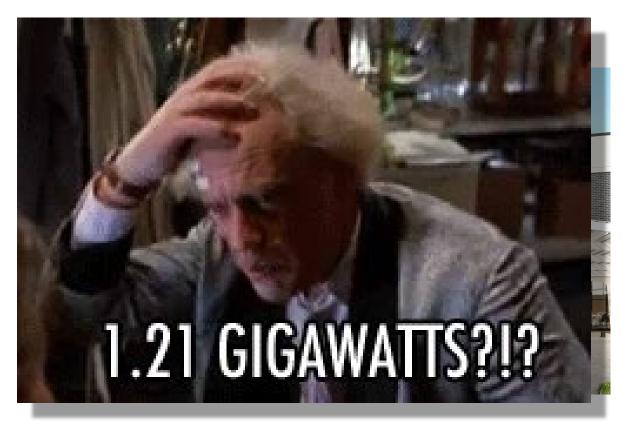
- Committing to a budget with a critical design schedule No Time to for Rework
- Providing a steel mill order package before the end of Schematic Design

Contractor

- Provide forum for trade partners to 'call you out'
- (Sub)Contractor Responding meaningfully, quickly, in real-time to design evolution

All: Trusting that the team will hit the dates and overcome the misses

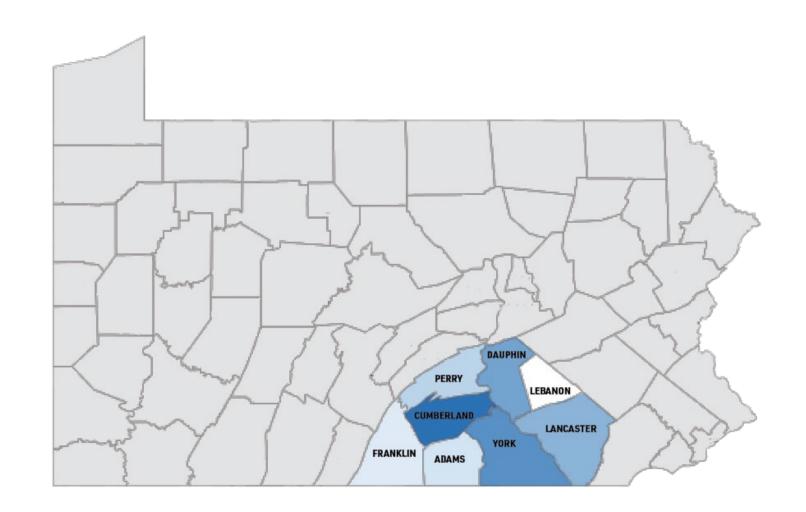

The Challenge: Speed to Market


Meeting the Speed to Market Goal for New Community Hospitals

8 months from onboarding AE/CM to groundbreaking, 26 months of construction

Do it again, build more, at lower unit cost

FROM THIS


IN THIS

The Reason: Meet a Critical Need

WHY DO WE NEED THESE HOSPITALS FAST?

- Overall strategy 10/20/30 rule from Primary Care, Specialist, Hospital
- Lancaster Closure of an existing hospital created a critical need for services

The Projects

HAMPDEN MEDICAL CENTER

- 300,000 sf; 108 beds
- 1st Community Hospital for System
- Owner's & Owner's Rep's 1st
 TVD Project
- 26 Months Construction
- Deed Restrictions Limiting GSF

COMMON ATTRIBUTES

Owner, CM, Owner's Rep

CM/Design Team
Prior TVD
Experience

IPD-Lite

LANCASTER MEDICAL CENTER

- 355,000 sf, 144 Beds
- 60,000 sf MOB
- 300 car Parking Garage
- 38% larger, same 26 Months
- Target Cost Reduction of 7%

The Solution

TARGET VALUE DELIVERY

- Productive methodology if managed effectively
- Requires a different set of priorities and new work methods
 - Get the right information at the right time
 - Likely to make most uncomfortable the first time
- Create priorities given limited dollars and time
- Give more time to make smarter decisions with the process.
- Trust in the process be uncomfortable

So how to run a TVD project? What does it take?

"You use that word a lot, I do not think it means what you think it means"

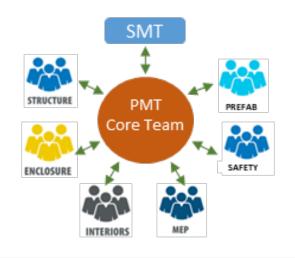
The How

- Target Value Delivery Overview
- Building The Right Team & Culture
- Planning Breaking the Paradigm
- Defining Early, Early, Early
- Executing In Real-Time

Collaboration

Target Value Delivery Overview

Target Value Delivery


Key Principles of Our Implementation

- Respect and Trust in Relationships are Key to Success
- Maximize Value as <u>Defined By Owner</u> Eliminate Waste
- Intensive/Earlier Collaboration & Communication
- Increased Planning in Design and Construction
- Continuous Improvement of Processes

Target Value Delivery

SMT - Senior Management Team - Guide PMT – Project Management Team – Integrate, Decide Implementation Teams – Initiate, Analyze, Recommend

LEAN TOOLS

🛎 BIG ROOM / CO-LOCATION 🏻 🛎 VI:

VISUAL MANAGEMENT

TARGET VALUE DELIVERY

PULL PLANNING

A3 THINKING

LAST PLANNER SYSTEM

CHOOSING BY ADVANTAGES

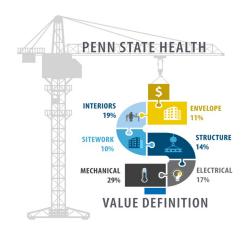
6S METHODOLOGY

REAL TIME EVALUATION

Cost

Schedule

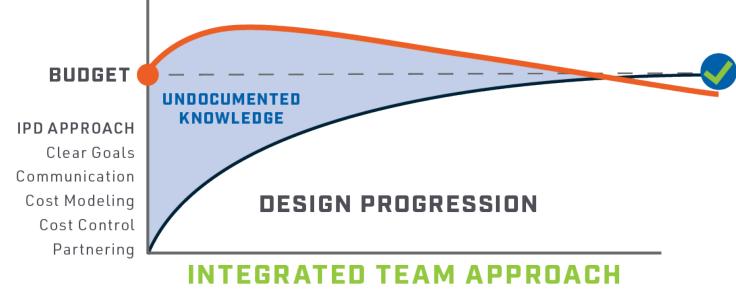
Constructability


Safety

Operations

Collaborative Planning

System Target Costs



11

Key Challenge: BUDGET

With a fast project, how can the team work to ensure budget consistency?

Building The Right Team & Culture

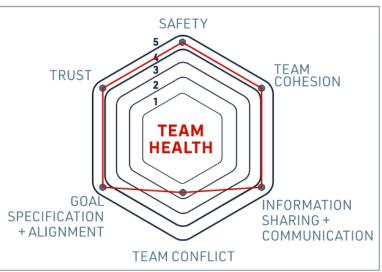
MALLELLE

Culture Trumps Strategy

KEY THINGS WE DID

- Team Health Monitoring Survey and open discussion
- Create trusting culture through actions Owner drives

WHAT WE LEARNED


- Partners felt valued and part of the team
- Developed accountability without demotivation

HOW WE IMPROVED (OR DIDN'T)

- Start Team Health at start of project
- Timely removal of partner if not a fit

Quarterly Survey

What is Going well,
Not Going Well,
Can be Improved?

On-Boarding Trade Partners

KEY THINGS WE DID

- Focus on the people and fit with the culture
- Bring them on as early as possible
- Lose the lawyer 2 page A3 RFP & Response

WHAT WE LEARNED

- Prioritize: Not all trades were needed day 1
- Not all trades understood LEAN processes and tools

HOW WE IMPROVED (OR DIDN'T)

- Staggered on-boarding per schedule need
- LEAN workshops open to area Subcontractors
- Provide templates for their RFP responses

TRADE PARTNERS AND TIMING TO ON-BOARDING (FROM CM JOINING THE TEAM)

CONCRETE	4 MONTHS
** STRUCTURAL STEEL	2 MONTHS
EXTERIOR METAL STUDS AND AVB*	4-5 MONTHS
EXTERIOR GLAZING	3 MONTHS
METAL PANELS*	4-5 MONTHS
ELEVATORS	3 MONTHS
MECHANICAL/PLUMBING	3 MONTHS
BAS CONTROLS	6-7 MONTHS
ELECTRICAL	3 MONTHS
PREFABRICATED CENTRAL UTILITY PLANT	3 MONTHS
> PREFABRICATED TOILET ROOMS	3-4 MONTHS

^{*}Depending on complexity and ability to penalize the work, this may or may not be an trade partner.

Planning – Breaking the Paradigm

Paradigm Shift: Design To Construction

KEY THINGS WE DID

- Milestone Planning at first meeting Construction then Design
- Schedule the design plan for construction deliverables
- Buy-in from team members (not without pushback)

WHAT WE LEARNED

- Open communication to discuss concerns
- Schedule and deliverables are constantly changing. Be Flexible
- Deliverables are continuously developed (contractual issue)
- Trust the process Understand there will be dynamic tension

HOW WE IMPROVED (OR DIDN'T)

- Spent more time planning the smaller/sub-milestones
- Don't do planning at end of the day it deserves a fresh brain
- Owners: Onboard the whole team based on TVD process

ation, Building Elevations NOT require nowing 36-bed option (max building size) FLEVATOR PRICING ot final shaft size or interior design or details ss concrete (foundation walls, footings). Not final pricing package, no Site plans both sides of State Road, utilities, grading, roads, build AND DEVELOPMENT - Prelin rmal Submittal. ocation, Building Elevations NOT required LAND DEVELOPMENT - Final Pla nly Hospital Site. HKS team to send design info to Rettew. Info regardin nitial Submittal ound plane and site utilities, building footprint, exits uilding Elevations NOT required nitial Submittal ound plane and site utilities, building footprint, exits Struc grids, sizes of columns, girders, main beams ONLY. Not edge of slat not shafts, not misc steel framing.

PSH Lancaster Packages

Defining – Early, Early, Early

MALLERILLE

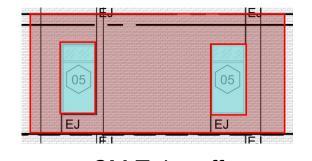
Scope Definition

KEY THINGS WE DID

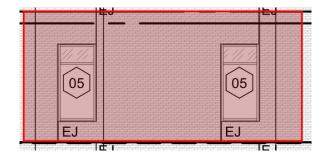
- Matrices, early scope discussions
 Review primary cost drivers first
- Early sketches to provide clarity

WHAT WE LEARNED

- Ensure talking the same language
- All in the room can solve quickly
- Include Client in every discussion


HOW WE IMPROVED (OR DIDN'T)

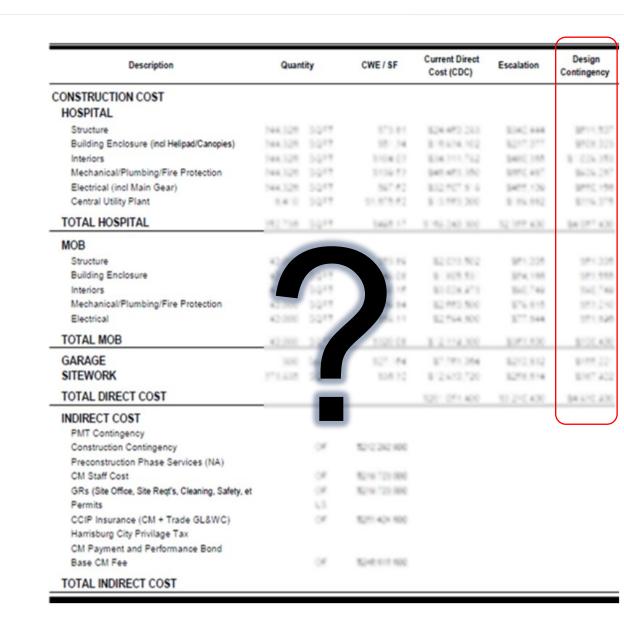
- Trades assembled pre-submittals early
- Learned each other's language mostly


	Pla	ın /	າ / Specify /					Drawings P		urchase	Delivery/Placeme		Insta			
<u>_</u>	ant	Ħ		Į.	dno			_	# # # #	Ę	dno	nt ant		ant sub	υĒ	
nee	sultant	ıltaı	ä	ultant	g	roup	g	Only	PENN STATE HAI	MPDE	MEDICAL CENTER					
/ Engin	Con	Const	nsult	Sonsu	cilities	II Gre	l Design	gh-in	McCLURE CO. JOB	76	PLUMBING PIPING MATERIALS SUBM					
ರ	Ĕ	ē	ပိ	2	ခြင့	<u></u>	ᆵ	Rou	SYSTEM NAME		SPEC. SECTION	P	PIPE		FITTINGS	
벁	Equipment	2	ᇤ	Kitchen	Щ.	Ę						2" & UNDER	2 1/2" & OVER	2" & UNDER	2 1/2" & OVER	2" & UNDER
힏	흑	Έ	Š	<u>2</u>	횰	l ဂ်	A/E	Æ	DOMESTIC WATER		221116	P2	P2 NOTE 6	F4	F4 NOTE 6	FL3
₹	효	2		~	≩	~		⋖	DOMESTIC WATER		221116		P6 NOTE 7		F8 NOTE 7	
	ш				0				PURE WATER SYSTEM		NO SPEC	P7 NOTE 5		F9 NOTE 5		
									GREASE WASTE-U/G		221316		P5		F10	
									SANITARY WASTE VENT	-A/G	221316	P5	P5	F10	F10	
									SANITARY WASTE RISE		221316	P4	P4	F7 NOTE 4	F7 NOTE 4	
X						X		X	SANITARY WASTE RUNS	S - A/G	221316	P5	P5	F10	F10	
									SANITARY WASTE -U/G		221316		P5		F10	
									STORM DRAINS (ST/SST		221316	P5	P5	F10	F10	
	Х								STORM DRAINS(ST/SST)- U/G	221316	P5	P5	F10	F10	
	X								NATURAL GAS		226100	P1	P1	F2 OR F1	F2 OR F1	FL4
									COMPRESSED AIR		226113	P3 NOTE 3	P3 NOTE 3	F5 NOTE 3	F5 NOTE 3	
	Х								MEDICAL AIR		226113	P3	P3	F5	F5	
X							Х		MEDICAL VACUUM		226213	P3	P3	F5	F5	
v							v		MEDICAL VACUUM EXH	AUST	226213		P3	F5	F5	
									MEDICAL GAS		226313	P3	P3	F5	F5	
									MEDICAL OXYGEN - U/G	i .	226313	P3	P3	F5	F5	

PIPE:

- P1: ASTM A-53/A-106 GR.B SCH. 40/STD TYPE E OR S, C.S
- P2: ASTM B88 TYPE L HARD DRAWN COPPER
- P3: ASTM B 819 TYPE L HARD DRAWN COPPER C.N.C
- FITTINGS:
- F1: ASTM A 234 WROUGHT STEEL WELDINGING FITTINGS
- F2: ASME B16,3 CLASS 150 M.
- F4: VIEGA PRO PRESS
- F5: ASTM B819 COPPER C.N.B

CM Take-off 500sf @ \$30/sf \$15,000



Mason Take-off 600sf @ \$30/sf \$18,000

Managing Risk

- Understand what is known and what level of detail at that time of cost model.
- Some things we know will come later (known unknowns)
- Some things will be surprises (unknown unknowns)
- Dealing with risk and surprises
 - > Address right away, record on Cost Control Log
 - > Define parameters
 - > Assign responsibility and schedule to resolve
 - > Actively manage design contingencies by PIT

KEY THINGS WE DID

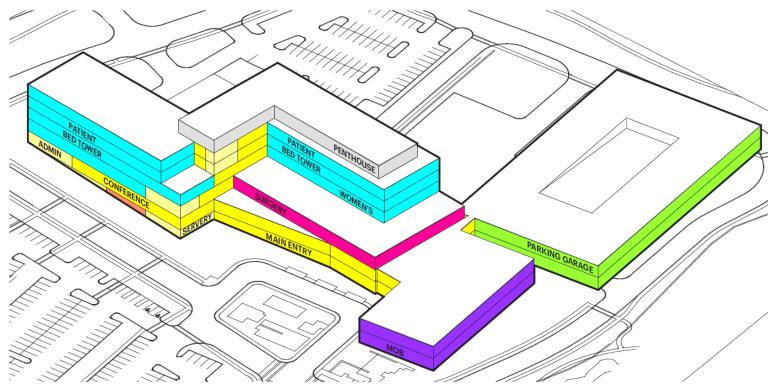
- Consistent and ongoing quantity takeoffs
- Agreement on definitions, working methods, goals, what is included in what system
- Concept estimate in 2 weeks based on Benchmarks

WHAT WE LEARNED

- Set targets on where you want to spend your dollars
- Why do we need it conversation vs do we really need it
- More communication between the estimator and designer yields results.

HOW WE IMPROVED (OR DIDN'T)

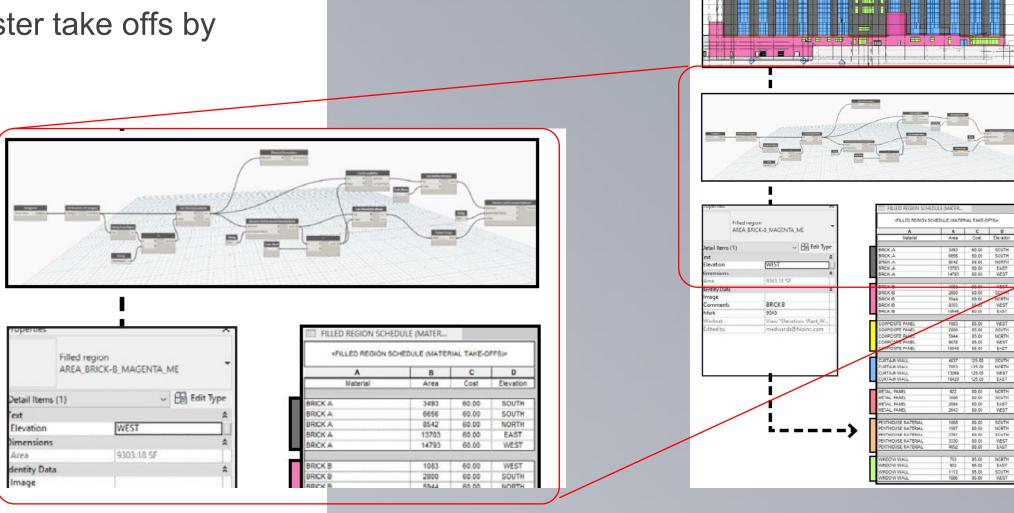
- Spent more time on target development (2mo) and 1st full estimate (4mo)
- Challenging the team can lead to great results (LMC targets 7% less than HMC)
- Develop a roadmap for each system exterior, structure, equipment, MEP



Secondary Touchpoints

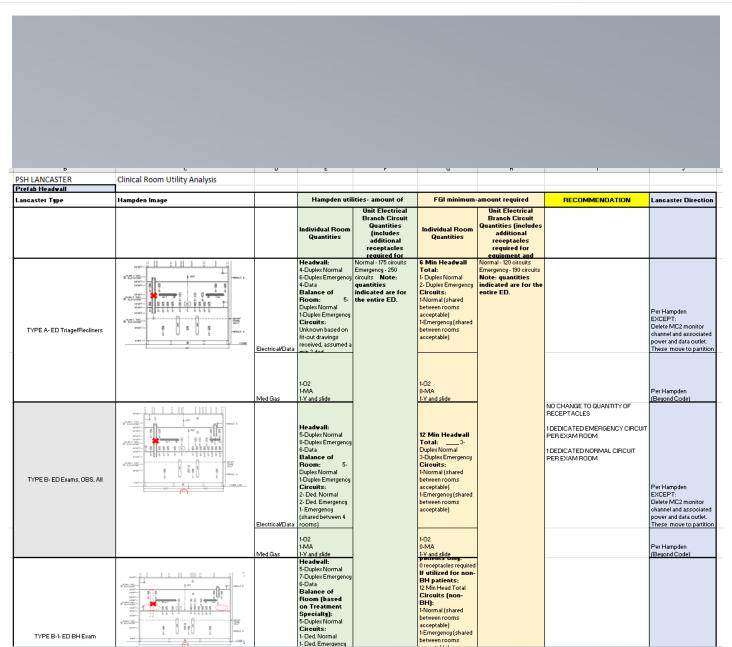
EXAMPLE: Exterior Wall

 At Massing/Program, we established targets and agreed on unit cost

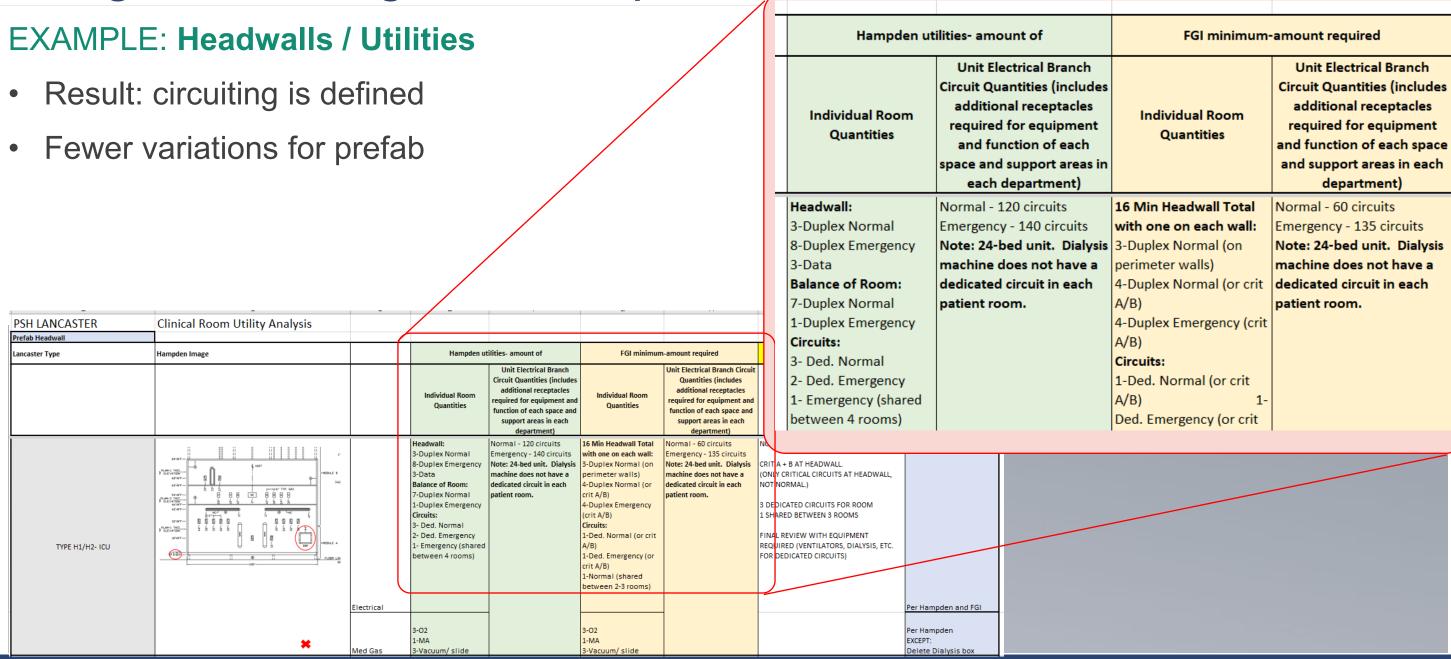


Building Massing - Programmatic Diagram

Exterior Wall Area (above grade)				for our budget test to confirm ou meeting budget targets		
	Estimated Areas	% total	Assumed cost	Assumed cost		(
Total	143,925			\$	12,050,000.00	\$
Window Wall glass/spandrel	4,200	2.9%	\$ 95.00	\$	399,000.00	
Curtain Wall glass/spandrel	43,000	29.9%	\$ 125.00	\$	5,375,000.00	
Brick A (lighter brick at upper levels)	47,500	33.0%	\$ 60.00	\$	2,850,000.00	
Brick B (darker brick at lower levels)	30,700	21.3%	\$ 60.00	\$	1,842,000.00	
Panel system	6,900	4.8%	\$ 85.00	\$	586,500.00	
Louvers	1,500	1.0%	\$ 125.00	\$	187,500.00	
Party wall between hospital and MOB (level 1 + 2), 125LF x 25'h	3,125	2%	\$ 80.00	\$	250,000.00	
Stair / PH Enclosure						Т
Elevators, 1500 sf, 250LF x 20'h	5,000	3.5%	\$ 80.00	\$	400,000.00	
Elevator Over-run, 75LF x 20'	2,000	1.4%	\$ 80.00	\$	160,000.00	
Screen wall, 550LF x 10'h	5,500		\$ 75.00	\$	412,500.00	
Canopies (cladding only, struc carried in	struc)					
Main entry canopy	4,500		\$ 80.00	\$	360,000.00	
ED drop off canopy	2,800		\$ 80.00	\$	224,000.00	
Ambulance drop off canopy	800		\$ 65.00	\$	52,000.00	
Loading Dock canopy (12' w)	1,100		\$ 65.00	\$	71,500.00	
		Total	for Canopies =	\$	707,500.00	


EXAMPLE: Exterior Wall

- Continuous measuring.
- New macro in Revit for faster take offs by Architect
- Keep design on target.
- Review unit costs with subs



EXAMPLE: Headwalls / Utilities

- During SD
- Learn from Past (last project had late cost increases due to circuiting)
- Establish Targets (what is needed? Where is the cost?)
- Define before we draw
- Matrix compare FGI, Past Project, Current Project

24

25

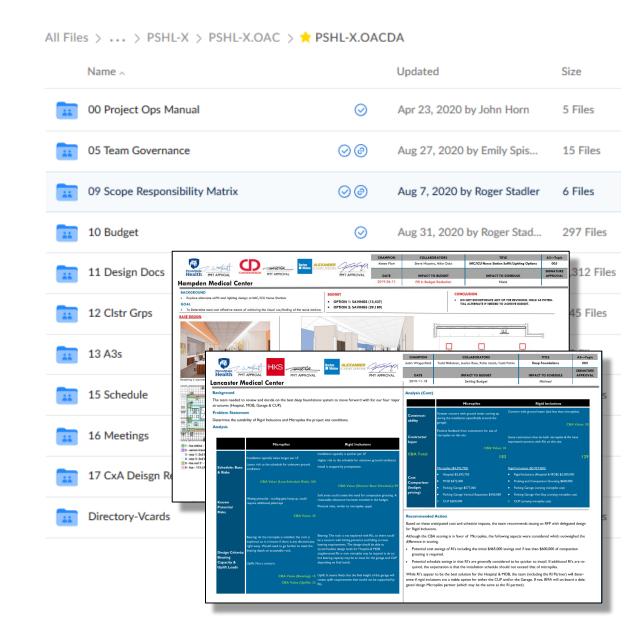
Executing in Real-Time

BELLELLEL

Organizing for Success

KEY THINGS WE DID

- Have processes defined early File sharing, decision making/makers
- Thoroughly documented discussions, decisions, impacts
- Cost Control Logs (CCL) to record decisions
- A3's to assist in decisions.


WHAT WE LEARNED

- One location for documentation accessible to all
- Reinforce the use of a single site.
- Getting decisions requires proper information

HOW WE IMPROVED (OR DIDN'T)

Remind of the file structure periodically

Communication

KEY THINGS WE DID

- Colocation facility, Big Room Utilization (In person twice/month for 2 days)
- Direct lines of communication no funnels that become roadblocks
- Establish the stakeholders and timing required for all decisions
- Owner was present at most meetings to provide real-time direction/decisions


WHAT WE LEARNED

- Needed more work-time between Big Room meetings to work
- Needed more continuity across the teams to ensure coordination

HOW WE IMPROVED (OR DIDN'T)

- Big Room once/month, scheduled calls for off-weeks,
- Need someone from Contractor and Architect that attends majority of meetings
- Each meeting needs someone to drive the team to decisions Assign an ELMO!

28

Real-Time Review/Continuous Estimating

KEY THINGS WE DID

- Estimate options as discussed, track decisions when made
- 'Target' allowances get tracked only accepted when solved
- CM: 3-4 Estimators for trades without Partners Spread work load

WHAT WE LEARNED

- Utilize rough, order of magnitude estimates to narrow possible solutions - Save Time!
- Culture allow making decisions on imperfect information

HOW WE IMPROVED (OR DIDN'T)

- One estimator on site, structure, enclosure, one on Interiors
- Reconciling Owner approvals (one set of docs) with the speed of delivery requirements was difficult

Description	Current Working Estimate (CWE)	Delta (CWE-TVD)	Delta % of CDC
CONSTRUCTION COST			
HOSPITAL		P	
Structure	ENCEPT.	MITERIO	-1.2%
Building Enclosure (incl Helipad/Canopies)	1 1 M. T. 186	H CH IN	-9.6%
Interiors	\$-15,242,730	N121.160	1.0%
Mechanical/Plumbing/Fire Protection	447, 343, 341	\$1.441 200	3.1%
Electrical (incl Main Gear)	in ? And	HATEN	3.1%
Central Utility Plant	112,808,841	19327 25%	-2.9%
TOTAL HOSPITAL	\$ 140.0E2.7E	18% 2W	0.4%
MOB			
Structure	11 888 755	11.1 医数	3.5%
Building Enclosure	IS ESTOYED	4 77 77.95	6.0%

Recap

THREETER

How can you apply this tomorrow?

Establish clear lines of communication, clear deliverables, and schedule.

Establish targets and metrics early, but don't cut too close to the bone (allow for development of design).

This isn't a traditional feedback loop.

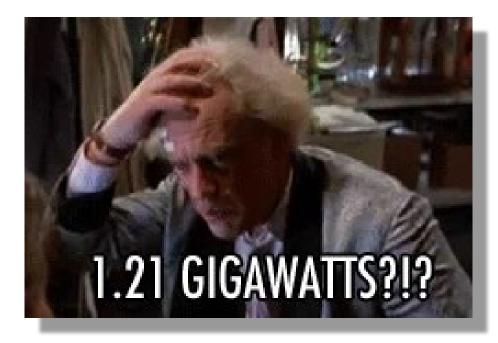
Communication should be nearly constant for most effective work.

Don't underestimate the importance of organizing how the team will share and document information

How can you apply this tomorrow?

Select the right partners, not just the 'cheap' ones. You will need experienced people who can be flexible and know their business.

Don't underestimate the value and impact of culture on the process Don't be afraid to remove toxic partners.


Owner makes the investment in preconstruction process and gets the ROI - minimizing change orders, RFI's. Distractions are minimized

Be uncomfortable. Trust the team. Trust the process.

Don't retreat to old behaviors when facing challenges

In the spirit of continuous improvement, we would like to remind you to complete this session's survey in the Congress app! We look forward to receiving your feedback. Highest rated presenters will be recognized.

BBBBBBBB

Contact Us

Todd Lord

Penn State Health

tlord@pennstatehealth.psu.edu

Gregory Stackel

HKS

gstackel@hksinc.com

Roger Stadler

Barton Malow Builders

Roger.stadler@bartonmalow.com

Thank you for attending this presentation. Enjoy the rest of the 22nd Annual LCI Congress!

